Infinitely many segregated vector solutions of Schrodinger system

نویسندگان

چکیده

We consider the following system of Schrödinger equations{−ΔU+λU=α0U3+βUV2−ΔV+μ(y)V=α1V3+βU2VinRN,N=2,3, where λ, α0, α1>0 are positive constants, β∈R is coupling constant, and μ:RN→R a potential function. Continuing work Lin Peng [6], we present solution type one species has peak at origin other many peaks over circle, but as seen in above, terms nonlinear.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infinitely Many Solutions for a Fourth–order Nonlinear Elliptic System

In this paper we study the existence of solutions for the nonlinear elliptic system ⎪⎪⎨ ⎪⎪⎩ Δu−Δu+V1(x)u = fu(x,u,v), Δv−Δv+V2(x)v = fv(x,u,v), u,v ∈ H(R) x ∈ R , where V1(x) and V2(x) are positive continue functions. Under some assumptions on fu(x,u,v) and fv(x,u,v) , we prove the existence of many nontrivial high and small energy solutions by variant Fountain theorems. This generalizes the re...

متن کامل

Infinitely Many Solutions of Superlinear Elliptic Equation

and Applied Analysis 3 Lemma 6 (see [17]). Assume that |Ω| < ∞, 1 ≤ p, r ≤ ∞, f ∈ C(Ω×R), and |f(x, u)| ≤ c(1+|u|). Then for every

متن کامل

Existence results of infinitely many solutions for a class of p(x)-biharmonic problems

The existence of infinitely many weak solutions for a Navier doubly eigenvalue boundary value problem involving the $p(x)$-biharmonic operator is established. In our main result, under an appropriate oscillating behavior of the nonlinearity and suitable assumptions on the variable exponent, a sequence of pairwise distinct solutions is obtained. Furthermore, some applications are pointed out.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2022

ISSN: ['0022-247X', '1096-0813']

DOI: https://doi.org/10.1016/j.jmaa.2022.126094